设为首页  |  添加收藏

   
新闻中心 / News
行业文章 您所在的位置:首页 > 新闻中心 > 行业文章
国内油气长输管道检测技术的现状与发展趋势(下)
更新日期:2012-07-20  浏览:2221
 

三、管道内检测技术
  管道内检测技术是将各种无损检测(NDT)设备加在岛清管器(PIG)上,将原来用作清扫的非智能改为有信息采集、处理、存储等功能的智能型管道缺陷检测器(SMART PIG),通过清管器在管道内的运动,达到检测管道缺陷的目的。早在1965年美国Tuboscopc公司就已将漏磁通(MFL)无损检测(NDT)技术成功地应用于油气长输管道的内检测,紧接着其他的无损内检测技术也相继产生,并在尝试中发现其广泛的应用前景。
  目前国外较有名的监测公司由美国的Tuboscopc GE PII、英国的British Gas、德国的Pipetronix、加拿大的Corrpro,且其产品已基本上达到了系列化和多样化。内检测器按功能可分为用于检测管道几何变形的测径仪、用于管道泄漏检测仪、用于对因腐蚀产生的体积型缺陷检测的漏磁通检测器、用于裂纹类平面型缺陷检测的涡流检测仪、超声波检测仪以及以弹性剪切波为基础的裂纹检测设备等。下面对应用较为广泛的几种方法进行简要介绍。 管道检测 管道潜望镜 管道封堵气囊 管道清淤
  1. 测径检测技术
  改技术主要用于检测管道因外力引起的几何变形,确定变形具体位置,有的采用机械装置,有的采用磁力感应原理,可检测出凹坑、椭圆度、内径的几何变化以及其他影响管道内有效内径的几何异常现象。
  2. 泄漏检测技术
  目前较为成熟的技术是压差法和声波辐射方法。前者由一个带测压装置仪器组成,被检测的管道需要注以适当的液体。泄漏处在管道内形成最低压力区,并在此处设置泄漏检测仪器;后者以声波泄漏检测为基础,利用管道泄漏时产生的20~40 kHz范围内的特有声音,通过带适宜频率选择的电子装置对其进行采集,在通过里程轮和标记系统检测并确定泄漏处的位置。
  3. 漏磁通过检测技术(MFL)
  在所有管道内检测技术中,漏磁通检测历史最长,因其能检测出管岛内、外腐蚀产生的体积型缺陷,对检测环境要求低,可兼用于输油和输气管道,可间接判断涂层状况,其应用范围最为广泛。由于漏磁通量是一种相对地噪音过程,即使没有对数据采取任何形式的放大,异常信好在数据记录中也很明显,其应用相对较为简单。值得注意的是,使用漏磁通检测仪对管道检测时,需控制清管器的运行速度,漏磁通对其运载工具运行速度相当敏感,虽然目前使用的传感器替代传感器线圈降低了对速度的敏感性,但不能完全消除速度的影响。该技术在对管道进行检测时,要求管壁达到完全磁性饱和。因此测试精度与管壁厚度有关,厚度越大,精度越低,其适用范围通常为管壁厚度不超过12 mm。该技术的精度不如超声波的高,对缺陷准确高度的确定还需依赖操作人员的经验。
  4. 压电超声波检测技术 管道检测 管道潜望镜 管道封堵气囊 管道清淤
  压电超声波检测技术原理类似于传统意义上的超声波检测,传感器通过液体耦合与管壁接触,从而测出管道缺陷。超声波检测对裂纹等平面型缺陷最为敏感,检测精度很高,是目前发现裂纹最好的检测方法。但由于传感器晶体易脆,传感器元件在运行管道环境中易损坏,且传感器晶体需通过液体与管壁保持连续的耦合,对耦合剂清洁度要求较高。因此仅限于液体输送管道。
  5. 电磁波传感检测技术(EMAT)
  超声波能在一种弹性导电介质中得到激励,而不需要机械接触或液体耦合。这种技术是利用电磁物理学原理以新的传感器替代了超声波检测技术中的传统压电传感器。当电磁波传感器载管壁上激发出超声波能时,波的传播采取已关闭内、外表面作为“波导器”的方式进行, 当管壁是均匀的,波延管壁传播只会受到衰减作用;当管壁上有异常出现时,在异常边界处的声阻抗的突变产生波的反射、折射和漫反射,接收到的波形就会发生明显的改变。由于基于电磁声波传感器的超生壁检测最重要的特征是不需要液体耦合剂来确保其工作性能。因此该技术提供了输气管道超声波检测的可行性,是替代漏磁通检测的有效方法。
  四、油气管道检测事业的潜力和发展
  油气管道检测是国内较新兴的事业,通过近年来的工作,笔者发现其具有巨大的经济效益和社会效益。1998年新疆石油管理局在对克拉玛依至乌鲁木齐的克——乌复线ф529×7(8)mm管道油改气工作中发生了分歧,一种观点认为该管道已投运17年之久,管道应该报废,没有重新利用的价值;另一种观点认为,管道通过检测评价和部分改造后可以输气。两种观点争论不休,决策者因没有任何依据,很难做出选择,后来经过专家论证决定首先对管道进行检测,根据检测结果进行局部整改,通过检测、评价得出管道腐蚀剩余强度满足最大输送压力3.0 MPa要求的结论,故采纳拉后一种观点。目前管道已安全运行了2年左右,为该局节约资金约2.3亿元,节约项目投资月90 %。
  近几年,我国政府也制定了一系列有关管道安全的行业或企业标准,如Q/GDSJ0023—90“管道干线腐蚀控制调查技术规范”、SY/T0078—93“钢质管道内腐蚀控制标准”、SY/T 0078—95“钢质管道及储罐腐蚀预防护方法标准”、SY/T 6151—1995“钢质管道管体腐蚀损伤评价方法”、SY 6186—1996“石油天然气管道安全规程”等,国家经贸委还下发了[2000]17号令《石油天然气管道安全监督与管理暂行规定》,中国石油天然气股份有限公司也编制了相应的《天然气管道检验规程》。上述标准和法令对管道检测内容、周期都做出了要求,对加快检测技术的发展无疑产生了巨大推动。
  虽然国内同行在管道外检测技术方面已取得了飞速发展,但管道内检测技术研究和应用仍有待加强。由于管道内检测器使用的清管器比日常生产中普遍使用的清洁清管器要长得多,国内早期的油气管道,不具备管道内智能检测的条件,应用前需对站场收、发装置及部分管道、管件进行改造。因此在标准中也未对此做出强制要求,致使该项技术的应用和研究发展较慢,限制了它的广泛推广与应用。尽管目前国内一些管道公司也引进了内检测设备,但因为形成系列化,应用效果也还不十分理想。可喜的是,国内部分管道公司已认识到此方面的不足,并开始着手研究和发展管道内检测技术。目前中国石油新疆油田分公司与长输管道检测评价中心联合开发了ф377 mm漏磁通智能检测仪,现已生产出样机并分别在乌鲁木齐王架构——706泵站、中国石油西南油气田分公司输气管理出卧——两线等管道上进行了应用,虽然在解释某些测试数据方面还不够完善,但毕竟填补了管道内检测技术的空白,为管道内检测技术国产化奠定了基础。笔者相信,通过引进、消化、吸收、创新,国内的油气长输管道检测技术将会逐步接近或达到发达国家水平。

管道检测 管道潜望镜 管道封堵气囊 管道清淤

 

 

 

 

 

 

 

 

 

 

 

 

非开挖技术.管道检测.管道修复.管道气囊.管道封堵.CCTV.管道内窥检测.潜望镜.气囊.HDPE.CIPP.管道非开挖.非开挖.管道清淤.封堵气囊.管道塌陷.管道破损.排水管道检测.非开挖技术.管道检测.管道修复.管道气囊.管道封堵.CCTV.管道内窥检测.潜望镜.气囊.HDPE.CIPP.管道非开挖.非开挖.管道清淤.封堵气囊.管道塌陷.管道破损.排水管道检测.非开挖技术.管道检测.管道修复.管道气囊.管道封堵.CCTV.管道内窥检测.潜望镜.气囊.HDPE.CIPP.管道非开挖.非开挖.管道清淤.封堵气囊.管道塌陷.管道破损.排水管道检测.非开挖技术.管道检测.管道修复.管道气囊.管道封堵.CCTV.管道内窥检测.潜望镜.气囊.HDPE.CIPP.管道非开挖.非开挖.管道清淤.封堵气囊.管道塌陷.管道破损.排水管道检测.

暂无任何信息!